ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ - Definition. Was ist ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ - definition

Предмет и аксиоматика ТЭЦ; Теории электрических цепей; Ветвь (теория электрических цепей); Узел (теория электрических цепей); Контур (теория электрических цепей)
  • [[Электрическое напряжение]]<br />[[Сила тока]]<br />[[Электрическая мощность]]<br />[[Электрическое сопротивление]]

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ      
К статье ЭЛЕКТРИЧЕСКИЕ ЦЕПИ
Мост Уитстона. Мост Уитстона - это схема электрической цепи для точного измерения сопротивлений на постоянном токе. Соответствующая принципиальная схема представлена на рис. 10, где измеряемое сопротивление обозначено через Rx. Остальные сопротивления известны, и их можно изменять. Если известные сопротивления подобрать так, чтобы высокочувствительный амперметр A показывал отсутствие тока, это означало бы, что потенциал точек b и c одинаков. В таком случае, обозначив ток через резисторы R1 и R3 символом I1, а ток через R2 и Rx - символом I2, можно записать
Поделив равенство (13) на (12) и решив полученное уравнение относительно Rx, находим
Схемой моста Уитстона можно пользоваться и для измерения полных сопротивлений (импедансов) на переменном токе. Для этого нужно вместо батареи взять источник напряжения переменного тока, а амперметр A заменить детектором переменного тока. Анализ схемы проводится аналогично, но в комплексных обозначениях.
Интегрирующая и дифференцирующая цепи. Дифференцирующей будет при некоторых приближенно выполняющихся условиях цепь рис. 6, если в ней источником напряжения является генератор напряжения e(t), зависящего от времени. Тогда уравнение (10) будет иметь вид
При малых R и C слагаемым iR можно пренебречь по сравнению с q/C:
что дает
Это эквивалентно требованию, чтобы постоянная времени RC была мала по сравнению с периодом напряжения e(t). Если такое условие выполняется, то напряжение на резисторе дается выражением
т.е. величина eR пропорциональна производной входного напряжения.
Если постоянная времени велика, а напряжение снимается с конденсатора, то эта цепь будет интегрирующей. В таком случае в уравнении (14) можно пренебречь величиной q/C по сравнению с iR, так что
или
.
Поскольку C = dq/dt, а q = 8 idt, напряжение на конденсаторе можно записать в виде
т.е. напряжение eC пропорционально интегралу входного напряжения.
Фильтры. Фильтры - это электрические цепи, пропускающие лишь определенные частоты и задерживающие все остальные. Идеальный фильтр верхних частот имеет полосу пропускания выше заданной "частоты среза" и полосу задерживания для более низких частот. Полосовой фильтр имеет полосу пропускания, расположенную между двумя заданными частотами среза. Общая схема включения фильтра показана на рис. 11. В качестве примера на рис. 12,a представлен фильтр нижних частот, включенный между генератором и нагрузкой R. На низких частотах импеданс катушек индуктивности мал, а конденсатора - велик, и почти весь ток проходит через нагрузку R. На высоких частотах импеданс катушек индуктивности велик, из-за чего снижается ток, а импеданс конденсатора мал, так что он как бы замыкает накоротко цепь малого тока, проходящего через первую катушку индуктивности. Справа на рис. 12,a представлен график зависимости отношения E2 /(Eg /2) от частоты, деленной на частоту среза. Как нетрудно видеть, в области высоких частот сигнал быстро затухает. Однако реальная частотная характеристика заметно отличается от характеристики (с резким частотным срезом) идеального фильтра нижних частот. На рис. 12,б и в представлены схемы полосового фильтра и фильтра верхних частот с соответствующими частотными характеристиками.
Узел цепи         
  • Электрические линии разного цвета в схеме представляют один узел. Всего на этой схеме 3 узла.
УЧАСТОК ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Узел электрической цепи
У́зел цепи́ в электротехнике, электронике — участок цепи с пренебрежимо малым электрическим сопротивлением, в котором соединяются три (или более) электрических вывода электрической цепи от электрических элементовSmith, Ralph J. (1966), Circuits, Devices and Systems, Chapter 2, John Wiley & Sons, Library of Congress Catalog Card No.
Практическое применение раскраски графов         
Существуют многочисленные практические приложения раскраски графов. Когда приложение моделируется как проблема с раскраской вершин графа, то вершины в каждом цветовом классе обычно представляют отдельные субъекты, которые не конкурируют или не конфликтуют друг с другом.

Wikipedia

Теория электрических цепей

Теория электрических цепей (ТЭЦ) — совокупность наиболее общих закономерностей, описывающих процессы в электрических цепях. Теория электрических цепей основана на двух постулатах:

  1. Исходное предположение теории электрических цепей. Все процессы в любых электротехнических устройствах можно описать с помощью двух понятий: тока и напряжения.
  2. Исходное допущение теории электрических цепей. Сила тока в любой точке сечения любого проводника одна и та же, а напряжение между любыми двумя точками пространства изменяется по линейному закону.
Was ist ЭЛЕКТРИЧЕСКИЕ ЦЕПИ: ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ - Definition